Open Access Te Herenga Waka-Victoria University of Wellington
Browse
- No file added yet -

Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests

journal contribution
posted on 2021-06-09, 04:13 authored by Brian E Sedio, Marko J Spasojevic, Jonathan A Myers, S Joseph Wright, Maria D Person, Hamssika Chandrasekaran, Jack H Dwenger, María Laura Prechi, Christian A López, David N Allen, Kristina J Anderson-Teixeira, Jennifer L Baltzer, Norman A Bourg, Buck T Castillo, Nicola DayNicola Day, Emily Dewald-Wang, Christopher W Dick, Timothy Y James, Jordan G Kueneman, Joseph LaManna, James A Lutz, Ian R McGregor, Sean M McMahon, Geoffrey G Parker, John D Parker, John H Vandermeer
Plant diversity varies immensely over large-scale gradients in temperature, precipitation, and seasonality at global and regional scales. This relationship may be driven in part by climatic variation in the relative importance of abiotic and biotic interactions to the diversity and composition of plant communities. In particular, biotic interactions may become stronger and more host specific with increasing precipitation and temperature, resulting in greater plant species richness in wetter and warmer environments. This hypothesis predicts that the many defensive compounds found in plants’ metabolomes should increase in richness and decrease in interspecific similarity with precipitation, temperature, and plant diversity. To test this prediction, we compared patterns of chemical and morphological trait diversity of 140 woody plant species among seven temperate forests in North America representing 16.2°C variation in mean annual temperature (MAT), 2,115 mm variation in mean annual precipitation (MAP), and from 10 to 68 co-occurring species. We used untargeted metabolomics methods based on data generated with liquid chromatography-tandem mass spectrometry to identify, classify, and compare 13,480 unique foliar metabolites and to quantify the metabolomic similarity of species in each community with respect to the whole metabolome and each of five broad classes of metabolites. In addition, we compiled morphological trait data from existing databases and field surveys for three commonly measured traits (specific leaf area [SLA], wood density, and seed mass) for comparison with foliar metabolomes. We found that chemical defense strategies and growth and allocation strategies reflected by these traits largely represented orthogonal axes of variation. In addition, functional dispersion of SLA increased with MAP, whereas functional richness of wood density and seed mass increased with MAT. In contrast, chemical similarity of co-occurring species decreased with both MAT and MAP, and metabolite richness increased with MAT. Variation in metabolite richness among communities was positively correlated with species richness, but variation in mean chemical similarity was not. Our results are consistent with the hypothesis that plant metabolomes play a more important role in community assembly in wetter and warmer climates, even at temperate latitudes, and suggest that metabolomic traits can provide unique insight to studies of trait-based community assembly.

History

Preferred citation

Sedio, B. E., Spasojevic, M. J., Myers, J. A., Wright, S. J., Person, M. D., Chandrasekaran, H., Dwenger, J. H., Prechi, M. L., López, C. A., Allen, D. N., Anderson-Teixeira, K. J., Baltzer, J. L., Bourg, N. A., Castillo, B. T., Day, N. J., Dewald-Wang, E., Dick, C. W., James, T. Y., Kueneman, J. G.,... Vandermeer, J. H. (2021). Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Frontiers in Ecology and Evolution, 9, 679638-. https://doi.org/10.3389/fevo.2021.679638

Journal title

Frontiers in Ecology and Evolution

Volume

9

Publication date

2021-05-26

Pagination

679638

Publisher

Frontiers Media SA

Publication status

Published online

Online publication date

2021-05-26

ISSN

2296-701X

eISSN

2296-701X

Usage metrics

    Journal articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC