File(s) stored somewhere else

Please note: Linked content is NOT stored on Open Access Victoria University of Wellington | Te Herenga Waka and we can't guarantee its availability, quality, security or accept any liability.

A conservative fully-discrete numerical method for the regularised shallow water wave equations

journal contribution
posted on 18.05.2021, 09:59 by Dimitrios Mitsotakis, Hendrik Ranocha, David I Ketcheson, Endre Süli
The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a class of equations derived recently and can be used in practical simulations to describe the propagation of weakly nonlinear and weakly dispersive long water waves, such as tsunamis. Studies of small-amplitude long waves usually require long-time simulations in order to investigate scenarios such as the overtaking collision of two solitary waves or the propagation of transoceanic tsunamis. For long-time simulations of non-dissipative waves such as solitary waves, the preservation of the total energy by the numerical method can be crucial in the quality of the approximation. The new conservative fully-discrete method consists of a Galerkin finite element method for spatial semidiscretisation and an explicit relaxation Runge--Kutta scheme for integration in time. The Galerkin method is expressed and implemented in the framework of mixed finite element methods. The paper provides an extended experimental study of the accuracy and convergence properties of the new numerical method. The experiments reveal a new convergence pattern compared to standard Galerkin methods.


Preferred citation

Mitsotakis, D., Ranocha, H., Ketcheson, D. I. & Süli, E. (2020). A conservative fully-discrete numerical method for the regularised shallow water wave equations.

Publication date


Usage metrics

Journal articles