Open Access Te Herenga Waka-Victoria University of Wellington
Browse

AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core

Download (4.82 MB)
journal contribution
posted on 2024-11-28, 22:28 authored by Yue WuYue Wu, S You, J Fang, Rodney BadcockRodney Badcock, Nicholas LongNicholas Long, Zhenan JiangZhenan Jiang
High-temperature superconducting (HTS) technology provides an alternative approach to achieve compact transformers. Addressing AC loss in the HTS winding is crucial for HTS transformer applications. Most numerical AC loss studies on HTS transformers have neglected the influence of iron cores. This work carries out an AC loss study to explore the impact of an iron core on the HTS windings in a 3-phase HTS 1 MVA transformer coupled with it. AC loss simulations for the transformer winding both with and without the iron core are conducted by adopting the three-dimensional (3D) T-A homogenization method. When the iron core is incorporated, the saturation magnetic fields of iron materials, flux diverters (FDs) with different geometries, and variations in turn spacings in the LV winding composed of Roebel cables are considered to investigate their influence on the AC loss of the transformer winding. The inclusion of the iron core leads to a 1.2% increase in AC loss for the transformer winding while simulating at the rated current. We attribute this slight difference to the non-inductive winding structure of the transformer winding, where a strong magnetic field generated in the space between the LV and HV windings effectively shields the influence of the iron core.

History

Preferred citation

Wu, Y., You, S., Fang, J., Badcock, R. A., Long, N. J. & Jiang, Z. (2024). AC loss study on a 3-phase HTS 1 MVA transformer coupled with a three-limb iron core. Superconductivity, 10, 100095-100095. https://doi.org/10.1016/j.supcon.2024.100095

Journal title

Superconductivity

Volume

10

Publication date

2024-06-01

Pagination

100095-100095

Publisher

Elsevier BV

Publication status

Published

ISSN

2772-8307

eISSN

2772-8307

Article number

100095

Language

en

Usage metrics

    Journal articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC