- No file added yet -
Particle Swarm Optimisation for Feature Selection and Weighting in High-Dimensional Clustering
conference contribution
posted on 2020-10-06, 22:05 authored by D O'Neill, Andrew LensenAndrew Lensen, Bing XueBing Xue, Mengjie ZhangMengjie Zhang© 2018 IEEE. Clustering, an important unsupervised learning task, is very challenging on high-dimensional data, since the generated clusters can be significantly less meaningful as the number of features increases. Feature selection and/or feature weighting can address this issue by selecting and weighting only informative features. These techniques have been extensively studied in supervised learning, e.g. classification, but they are very difficult to use with clustering due to the lack of effective similarity/distance and validation measures. This paper utilises the powerful global search ability of particle swarm optimisation (PSO) on continuous problems, to propose a PSO based method for simultaneous feature selection and feature weighting for clustering on high-dimensional data, where a new validation measure is also proposed as the fitness function of the PSO method. Experiments on datasets with varying dimensionalities and different number of known clusters show that the proposed method can successfully improve clustering performance of different types of clustering algorithms over using the baseline of the original feature set.
History
Preferred citation
O'Neill, D., Lensen, A., Xue, B. & Zhang, M. (2018, September). Particle Swarm Optimisation for Feature Selection and Weighting in High-Dimensional Clustering. In 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, BRAZIL (00 pp. 173-180). IEEE. https://doi.org/10.1109/CEC.2018.8477974Publisher DOI
Conference name
2018 IEEE Congress on Evolutionary Computation (CEC)Conference Place
Rio de Janeiro, BRAZILConference start date
2018-07-08Conference finish date
2018-07-13Title of proceedings
2018 IEEE Congress on Evolutionary Computation, CEC 2018 - ProceedingsVolume
00Series
IEEE Congress on Evolutionary ComputationPublication or Presentation Year
2018-09-28Pagination
173-180Publisher
IEEEPublication status
PublishedUsage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC